An Explicit, Stable, High-Order Spectral Method for the Wave Equation Based on Block Gaussian Quadrature
نویسنده
چکیده
This paper presents a modification of Krylov Subspace Spectral (KSS) Methods, which build on the work of Golub, Meurant and others pertaining to moments and Gaussian quadrature to produce high-order accurate approximate solutions to the variable-coefficient second-order wave equation. Whereas KSS methods currently use Lanczos iteration to compute the needed quadrature rules, the modification uses block Lanczos iteration in order to avoid the need to compute two quadrature rules for each component of the solution, or use perturbations of quadrature rules that tend to be sensitive in problems with oscillatory coefficients or data. It will be shown that under reasonable assumptions on the coefficients of the problem, a 1-node KSS method is second-order accurate and unconditionally stable, and methods with more than one node are shown to possess favorable stability properties as well, in addition to very high-order temporal accuracy. Numerical results demonstrate that block KSS methods are significantly more accurate than their non-block counterparts, especially for problems that feature oscillatory coefficients.
منابع مشابه
Spectral Methods for Time-dependent Variable-coefficient PDE Based on Block Gaussian Quadrature
Block Krylov subspace spectral (KSS) methods are a “best-of-both-worlds” compromise between explicit and implicit time-stepping methods for variable-coefficient PDE, in that they combine the efficiency of explicit methods and the stability of implicit methods, while also achieving spectral accuracy in space and high-order accuracy in time. Block KSS methods compute each Fourier coefficient of t...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملHigh-accuracy alternating segment explicit-implicit method for the fourth-order heat equation
Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...
متن کاملExplicit high-order time stepping based on componentwise application of asymptotic block Lanczos iteration
This paper describes the development of explicit time-stepping methods for linear partial differential equations that are specifically designed to cope with the stiffness of the system of ordinary differential equations that results from spatial discretization. As stiffness is caused by the contrasting behavior of coupled components of the solution, it is proposed to adopt a componentwise appro...
متن کاملStability of Krylov Subspace Spectral Methods
This talk summarizes recent analysis of an alternative approach to the solution of diffusion problems and wave propagation problems in the variable-coefficient case that leads to a new class of numerical methods, called Krylov subspace spectral methods [3]. The basic idea behind these methods, applied to a PDE of the form du/dt + L(x,D)u = 0, is to use Gaussian quadrature in the spectral domain...
متن کامل